Boundary singularity for
fractional elliptic and parabolic problems

Young Researcher’s Workshop on Nonlocal PDEs and Applications.
Universidad de Granada
October 27, 2022.

Author

David Gómez-Castro

Published

October 27, 2022

Co-authors

Juan Luis Vázquez

U. Autónoma de Madrid, Real Academia de Ciencias

Nicola Abatangelo

U. Bologna

Hardy Chan

U. Basel

Fractional Laplacian in \(\mathbb R^d\)

Fractional Laplacian

\[ (-\Delta)^s u (x) = \frac{C(d,s)}2 \int_{\mathbb R^d } \frac{2u(x) - u(x+y) - u(x-y)}{|y|^{d+2s}} d y. \]

The popular choice is \[ {C(d,s)} = \left( \int_{\mathbb R^d} \frac{1 - \cos \omega_1}{|\omega|^{d+2s}} d \omega\right)^{-1} \]

Equivalent definitions (up-to ten (Kwasnicki, 2017))

  • The unique operator such that

    \[ \mathcal F[ (-\Delta)^s u ] = |\xi|^{2s} \mathcal F[u] \]

    i.e. the spectral fractional power of \(-\Delta\).

  • The infinitesimal generator of a Lévy process \(X_h\), characterised by “long jumps”

    \[ (-\Delta)^s u (x) = \lim_{h \to 0} \frac{ \mathbb E[ f(x) - f(x - X_h) ] }{ h } \]

The Riesz potential

\[ \mathcal I_{\alpha} [u] (x) = C(d, \alpha) \int_{\mathbb R^d} \frac{u(y)}{|x-y|^{d-\alpha}} dy. \]

It is defined for \(0 < \alpha < d\).

It is known that with the right constant \[ \mathcal F[ \mathcal I_{\alpha} u ] = |\xi|^{-\alpha} \mathcal F[u] \]

Thus, \[ \mathcal I_{2s} = \Big( (-\Delta)^s \Big)^{-1} \]

All of the above works on tempered functions, in particular \[ u(x) \to 0, \qquad \text{ as } |x| \to \infty. \]

Laplace equation

\[ \begin{cases} (-\Delta)^s u (x) = f(x) & \textrm{for all } x \in \mathbb R^d \\ u(x) \to 0 & \textrm{as } |x| \to \infty \end{cases} \]

Then when \(d > 2s\) we can recover through the Riesz potential \[ u(x) = C(d,s) \int_{\mathbb R^d} \frac{f(y)}{|x-y|^{d-2s}} dy. \]

For any \(d, 2s\) we can also find this solution by the minisation of the energy functional

\[ J(u) = \frac 1 2 \int_{\mathbb R^d} \int_{\mathbb R^d } \frac{|u(x) - u(y)|^2}{|x-y|^{d+2s}} dx \, dy - \int_\Omega f u \]

Regularity: (Caffarelli & Silvestre, 2007) extension

The principal value

Notice that \[\begin{align*} \int_{ \mathbb R^d \setminus B_{\varepsilon} (0) } &\frac{ 2u(x) - u(x+y) - u(x-y) }{|y|^{d+2s}} dy \\ &= 2\int_{ \mathbb R^d \setminus B_{\varepsilon} (0) } \frac{ u(x) - u(y)}{|x-y|^{d+2s}} dy \\ \end{align*}\]

Thus, it makes sense to define \[\begin{equation*} \mathrm{P.V.}\int_{ \mathbb R^d } = \lim_{\varepsilon \to 0} \int_{ \mathbb R^d \setminus B_{\varepsilon} (0) } \end{equation*}\]

Numerics

There are both Finite Difference schemes \[ (-\Delta)^s_h u(x) = \sum_{i \in \mathbb Z^d} \omega_{i-j} (u(x) - u(x+ih)) \]

Some choice of weights for \(d = 1\) is given in (Huang & Oberman, 2014).

See also (Del Teso, Endal & Jakobsen, 2018)

Finite Element schemes are also possible. The un-bounded domain is tricky.

Fractional LaplacianS
in bounded domains

Restricted fractional Laplacian

Singular integral operator: \[ (-\Delta)^s_{\mathrm {RFL}} u (x)= C(d,s) \, \mathrm{P.V.}\int_{ \mathbb R^d } \frac{u(x) - u(y)}{|x-y|^{d+2s}} \; dy. \]

If we work only in \(\Omega\), we must prescribe \(u\) in \(\Omega^c = \mathbb R^d \setminus \Omega\).

Spectral fractional Laplacian

Operational power. \[ -\Delta \varphi_m = \lambda_m \varphi_m \textrm{ in } \Omega, \qquad \varphi_m = 0 \textrm{ on } \partial \Omega. \]

one defines \[ u(x) = \sum_{m=1}^{+\infty} {u_m} \varphi_m(x) \qquad \longmapsto \qquad (-\Delta)_{\mathrm{SFL}}^s u (x) = \sum_{m=1}^{+\infty} \lambda_m^s u_m \varphi_m (x). \]

The “boundary condition” is \(u = 0\) on \(\partial \Omega\).

Censored fractional Laplacian (CFL)

For \(s > \frac 1 2\) \[\begin{equation} \tag{CFL} (-\Delta)^s_{\mathrm{CFL}} u (x) = C(d,s) \, \mathrm{P.V.} \int_{ \Omega } \frac{u(x) - u(y)}{|x-y|^{n+2s}} \; dy, \end{equation}\]

We do not integrate over \(\Omega^c\), so it makes sense to pick simply \(u=0\) on \(\partial\Omega.\)

Laplace equation

\[ \begin{dcases} \mathcal L u = f & \Omega \\ u = 0 & \partial \Omega \text{ or } \mathbb R^d \setminus \overline \Omega \\ \end{dcases} \]

We observe

  • \(\mathcal L = (-\Delta)^s_{\mathrm{RFL}}, (-\Delta)^s_{\mathrm{CFL}}\) are sub-differentials of energies \[ J(u) = \int_A \int_A \frac{|u(x) - u(y)|^2 }{|x-y|^{d+2s}} dx \, dy. \]

  • \(\mathcal L = (-\Delta)^s_{\mathrm{SFL}}\) is just a power.

    The inverse is naturally \((-\Delta_\Omega)^{-s}\), and in works between “powers” of \(H_0^1(\Omega)\).

Self-adjoint compact operators. Furthermore \(\lambda_1 > 0\).

Nice theory of energy solutions.

Higher regularity: RFL (Ros-Oton & Serra, 2014), CFL (Fall & Ros-Oton, 2021)

Green kernels

The solution of the Laplace equation \[ \begin{dcases} \mathcal L u = f & \Omega \\ u = 0 & \partial \Omega \text{ or } \mathbb R^d \setminus \overline \Omega \\ \end{dcases} \]

Allows us to define \(\mathrm G : L^2 (\Omega) \to L^2(\Omega)\) we can represent it by a kernel \[ u(x) = \mathrm G[f] (x) = \int_\Omega \mathbb G(x,y) f(y) dy. \]

The probabilistic approach provides in each of our cases a similar shape \[ \mathbb G(x,y) \asymp \frac{1}{|x-y|^{d-2s}} \left(1 \wedge \frac{\delta(x)}{|x-y|} \right)^\gamma\left(1 \wedge \frac{\delta(y)}{|x-y|} \right)^\gamma \]

Since we deal only with self-adjoint \(\mathcal L\), then \(\mathbb G(x,y) = \mathbb G(y,x)\).


The probabilistic approach provides in each of our cases a similar shape \[ \mathbb G(x,y) \asymp \frac{1}{|x-y|^{d-2s}} \left(1 \wedge \frac{\delta(x)}{|x-y|} \right)^\gamma\left(1 \wedge \frac{\delta(y)}{|x-y|} \right)^\gamma \]

And \(\gamma \in (0,1]\) depends on the setting

Numerics

Finite Differences

  • For the RFL and CFL we can re-use the weights of the whole space.

  • For the SFL: Make \(A\) numerical matrix for \(-\Delta\) problem and take \(A^s\): \[ \textrm{e.g. } A = \begin{pmatrix} 2 & -1 & \\ -1 & 2 & - 1 \\ & \ddots & \\ &&-1&2 \end{pmatrix} \]

Finite Elements

Large solutions

Definition

By large solution we mean solutions that satisfy \[ \mathcal L u = F(x,u) \text{ in } \Omega \]

But that blow up on the boundary \[ u(x) \to \infty \text{ as } \mathrm{dist}(x, \partial \Omega) \to 0. \]

From now on

\[ \delta(x) = \mathrm{dist}(x, \partial \Omega) . \]

For the usual Laplacian

For the problems \[ -\Delta u + F(u) = 0 \]

Keller-Osserman condition:

Let \(f\) be continuous, \(F(0) = 0\) and \(F > 0\) otherwise,

then positive large solutions exist iff \[ \int_a^\infty \left( \int_0^t F(s) ds \right)^{-\frac 1 2} d t = \infty. \]

In radial coordinates this easy by shooting arguments

Canonical example: \(\Delta u = u^p\) with \(p > 1\).

Large solutions

The solution of the Laplace equation \[ \begin{dcases} \mathcal L u = f & \Omega \\ u = 0 & \partial \Omega \text{ or } \mathbb R^d \setminus \overline \Omega \\ \end{dcases} \qquad u(x) = \mathrm G[f] (x) = \int_\Omega \mathbb G(x,y) f(y) dy. \]

where \(\mathbb G(x,y) \asymp \frac{1}{|x-y|^{d-2s}} \left(1 \wedge \frac{\delta(x)}{|x-y|} \right)^\gamma\left(1 \wedge \frac{\delta(y)}{|x-y|} \right)^\gamma\)

(Abatangelo, GC & Vázquez, 2022) : \[ \mathrm G[\delta^\beta] \asymp \begin{dcases} \delta^\gamma & \beta +2s > \gamma \\ \delta^{\gamma} \log|\delta| & \beta +2s = \gamma \\ \delta^{\beta + 2s} & \beta +2s < \gamma \text{ and } \beta > -1-\gamma \\ \infty & \beta \le -1-\gamma \end{dcases} \]

Summary

\[ \mathrm G[\delta^\beta] \asymp \begin{dcases} \delta^\gamma & \beta +2s > \gamma \\ \delta^{\gamma} \log|\delta| & \beta +2s = \gamma \\ \delta^{\beta + 2s} & \beta +2s < \gamma \text{ and } \beta > -1-\gamma \\ \infty & \beta \le -1-\gamma \end{dcases} \]

Therefore, the relation \(\mathrm G[\delta^\beta] \asymp \delta^\alpha\) is

Large solution of the Dirichlet problem

Large solution of the Dirichlet problem

No large solutions in the SFL

The Bogdan solution

(Bogdan et al., 2009)

Take \(s \in (0,1)\)

\[ u(x) = \begin{cases} (1-|x|^2)^{s-1} & \text{if } |x|<1 \\ 0 & \text{if } |x| \ge 1 \\ \end{cases} \]

satisfies

\[ (-\Delta)^s u(x) = 0 \qquad \text{if } |x| < 1. \]

Reviewing the usual Laplacian

From the interior to the boundary.
Usual Laplacian

Laplace equation

\[ \begin{dcases} -\Delta u = f & \Omega \\ u = 0 & \partial \Omega \\ \end{dcases} \]

Poisson

\[ \begin{dcases} -\Delta v = 0 & \Omega \\ v = h & \partial \Omega \\ \end{dcases} \]

For \(\varphi \in W_0^{1,\infty} (\Omega)\) we have that

\[ \int_\Omega u (-\Delta\varphi) = \int_\Omega f \varphi \]

\[ \int_\Omega v (-\Delta\varphi) = - \int_{\partial \Omega} h \frac{\partial \varphi}{\partial n} \]

We aim to prove \(u_m = \mathrm G[f_m] \to v\). Can we make \[ \int_\Omega f_m \varphi \to - \int_{\partial \Omega} h \frac{\partial \varphi}{\partial n} ? \]

Tubular neighbourhood of \(\partial \Omega\)

The map \[ \begin{aligned} (-R,R) \times \partial \Omega &\to U_R \\ (r,z) &\mapsto z - r \vec n(z) \end{aligned} \] is smooth and invertible for \(R\) small enough. This defines a tubular neighbourhood of \(\partial \Omega\).

A function in \(h \in L^1(\partial \Omega)\) can be extend to \(L^1(U_R)\) by \[\widetilde h(x) = h(z).\]

For integration, there is a Jacobian such that \(J(z,0) = 1\) and \[ \int_{a < \delta < b} f(x) = \int_{a}^b \int_{\partial \Omega} f(z - r n(z)) \, J(z,r) d z \, d r \]

Localising to the boundary. Usual Laplacian

Can we make \(\int_\Omega f_m \varphi \to -\int_{\partial \Omega} h \frac{\partial \varphi}{\partial n} ?\)

Extend \(h\) towards the interior by the tubular neighbourhood mapping and \[ f_m (x) = \widetilde h (x) \frac{|\partial \Omega|\chi_{A_m}}{ |A_m| } \frac{1}{\delta (x)} \qquad \text{ where } A_m = \left\{ x: \delta(x) < \frac 1 m \right\} \]

We get

\(\displaystyle\int_\Omega f_m \varphi = \frac{|\partial \Omega|}{|\{ \delta < \frac 1 m \}|} \int_{ \{ \delta < \frac 1 m \} } \widetilde h \frac{\varphi}{\delta}\)

\(\displaystyle \phantom{\int_\Omega f_m \varphi} = \frac 1 m \int_0^{\frac 1 m} \int_{\partial \Omega} h(z) \frac { \varphi( z - r n(z) ) }{ r } J(z,r) \, dz \, dr\)

\(\displaystyle \phantom{\int_\Omega f_m \varphi} \longrightarrow -\int_{\partial \Omega} h \frac{\partial \varphi}{\partial n}\)

as \(m \to \infty\).

It works!

From the kernel side

\[ \begin{aligned} \mathrm G[f_m] (x) &= \frac{|\partial \Omega|}{|A_m|}\int_{A_m} \frac{\mathbb G(x,y)}{\delta(y)} \widetilde h(y) dy \end{aligned} \]

As \(m \to \infty\)

\[ \mathrm G[f_m] (x) \longrightarrow v(x) = -\int_{\partial \Omega} \frac{\partial \mathbb G}{\partial n_y} (x,\zeta) h(\zeta) d\zeta \]

This is the Poisson kernel.

Rigurous proof. Usual Laplacian

The first eigenfunction is \(\varphi_1 \asymp \delta\).

If \(f, g \ge 0\), then \(\mathrm G[f] / \mathrm G[g] \in L^\infty(\Omega)\).

If \(f \in L^\infty (\Omega)\), then \(\frac{\mathrm G[f]}{\delta} \in L^\infty (\Omega)\). Thus \(\mathrm G: L^\infty(\Omega) \to \delta L^\infty (\Omega)\) is compact.

Let \(\| f \|_{L^1(\Omega, \delta)} = \int_\Omega |f| \delta\)

We deduce \(\mathrm G: L^1(\Omega, \delta) \to L^1 (\Omega)\) is compact.

We have precisely we have a bounded sequence in this norm \[ f_m (x) = \widetilde h (x) \frac{|\partial \Omega|\chi_{A_m}}{ |A_m| } \frac{1}{\delta (x)} \]

So \(u_m = \mathrm G[f_m] \to \xi\) in \(L^1 (\Omega)\). Passing to the limit in the weak formulation \(\xi = v\). \(\square\)

Martin problem for fractional operators

Martin problem

The will show that we can pass \(\mathrm{supp}(f_m) \to \partial \Omega\) and \(\mathrm G[f_m] \to v \ne 0\).

We construct \(u^\star \in L^1_{loc} (\Omega)\) such that

for any \(h \in L^1 (\partial \Omega)\) the problem

\[ \begin{dcases} \mathcal L u = 0 & \Omega \\ u = 0 & \mathbb R^d \setminus \overline \Omega \\ \lim_{x \to z} \frac{u(x)}{u^\star (x)} = h(z) & \text{for all } z \in \partial \Omega \end{dcases} \]

admits a solution.

We show that \[ u^\star \asymp \delta^{2s-\gamma -1 }. \]


Martin problem. Literature

Laplace equation
Weak dual formulation

Multiplying by \(\varphi\) and integrating \[ \int_\Omega \varphi \mathcal L u = \int_\Omega f \varphi \]

If \(\varphi\) is in the suitable class of homogeneous boundary conditions \[ \int_\Omega u \mathcal L \varphi = \int_\Omega f \varphi \]

In particular, if we take \(\varphi = \mathrm{G} (\psi)\) then we have the weak dual formulation

\[\begin{equation} \tag{WDF} \int_\Omega u \psi = \int_\Omega f \mathrm{G} (\psi) \end{equation}\]

This presentation was introduced by (Bonforte, Figalli & Vázquez, 2018)

Definition

A very weak solution is a function satisfying (WDF) for all \(\varphi \in L^\infty_c (\Omega)\).

Functional set-up

We recall that \(\mathbb G(x,y) \asymp \frac{1}{|x-y|^{d-2s}} \left(1 \wedge \frac{\delta(x)}{|x-y|} \right)^\gamma\left(1 \wedge \frac{\delta(y)}{|x-y|} \right)^\gamma\)

Since \(\mathrm G(\delta^\gamma) \asymp \delta^\gamma\), we know that \[ \mathrm G : L^\infty_{c} (\Omega) \to \delta^\gamma L^\infty( \Omega ). \]

By duality

\[ \mathrm G : L^1 (\Omega, \delta^\gamma ) \to L^1_{loc} ( \Omega ). \]

Weak compactness in \(L^1 (K)\): equi-integrability for \(A \subset K \Subset \Omega\).

\[ \begin{aligned} \int_A |\mathrm G(f)| &= \int_\Omega f \mathrm G( \mathrm{sign}(u) \, \chi_A) \le \| f \|_{L^1 (\Omega, \delta^\gamma)} \left\| \frac{\mathrm G( \chi_A )} {\delta^\gamma} \right\|_{L^\infty} \end{aligned} \]

With some sharp computations \[ \int_A |\mathrm G(f)| \le C \| f \|_{L^1 (\Omega, \delta^\gamma)} |A|^\alpha \mathrm{dist} (K, \partial \Omega)^{-\beta} \]

Hopf

Not difficult to check that \(\mathbb G (x,y) \ge c \delta(x)^\gamma \delta(y)^\gamma\).

Then, for \(f \ge 0\)

\[ u(x) \ge c \delta(x)^\gamma \int_\Omega f(x) \delta(y)^\gamma dy. \]

If \(0 \le f \notin L^1(\Omega, \delta^\gamma)\), then \(u \equiv +\infty\).

Localisation to the boundary
General setting

Therefore, if \(f_m\) are bounded in \(L^1(\Omega, \delta^\gamma)\), then \(\mathrm G[f_m]\) weak compact in \(L^1(K)\).

Through a diagonal argument define \[ u^\star = \lim_{m \to \infty} \mathrm G \left[ \delta^{-\gamma} \frac{|\partial \Omega|}{|A_m|} \chi_{A_m} \right ], \qquad A_m = \{ \frac 1 m < \delta < \frac 2 m \} \]

\(u_j \to u^\star\)

\(u_j \to u^\star\)

\(u_j \to u^\star\)

Localisation to the boundary
The kernel point of view

As we did before \[ \mathrm G[f_m] = \frac{|\partial \Omega|}{|A_j|} \int_{A_j} \frac{\mathbb G(x,y)}{\delta(y)^\gamma} \widetilde h (y) d y \]

as \(m \to \infty\) we get

\[ \mathrm G[f_m] \to \int_{\partial \Omega} \mathbb M(x,\zeta) h(\zeta) d\zeta = \mathrm M[h] . \]

where we have to assume that the following limit happens suitably (it does in the examples)

\[\begin{equation} \tag{H} \mathbb M(x,\zeta) = \lim_{y \to \zeta} \frac{\mathbb G(x,y)}{\delta(y)^\gamma} = D_\gamma \mathbb G(x,\zeta). \end{equation}\]

using the Green kernel estimates, we deduce that

\[ \mathbb M(x,\zeta) \asymp \frac{\delta(x)^\gamma}{|x-\zeta|^{d+\gamma - (2s-\gamma)}}. \]

The critical solution \(u^\star\)

When we take \(h = 1\) we get

\[ u^\star (x) = \int_{\partial \Omega} \mathbb M(x,\zeta) d \zeta. \]

Using the Martin kernel estimates

\[ u^\star (x) \asymp \delta^{2s-\gamma - 1 }. \]

This is

  • RFL: \(s-1\)

  • SFL: \(2(s-1)\)

  • CFL: \(0\), i.e. bounded.

Satisfying the interior equation

In this setting, we have not defined \(\mathcal L\). However, formally we have that \[ \mathcal L u_m (x) = 0 \qquad \text{if } \delta(x) > \frac 2 m. \]

in any kind of distributional setting where we can pass to the limit \(u = \mathcal M[h]\) satisfies

\[ \mathcal L u (x) = 0. \]

Satisfying the boundary equation.
Continuous data

When \(h \in \mathcal C(\partial \Omega)\) it is a direct computation that

\(\displaystyle \frac{\mathcal M[h](x) }{u^\star (x)} - h (\zeta_0)\) \(\displaystyle = \frac{\int_{\partial \Omega} \mathbb M(x,\zeta) h(\zeta) d \zeta }{ \int_{\partial \Omega} \mathbb M (x, \zeta) d \zeta } - \frac{\int_{\partial \Omega} \mathbb M(x,\zeta) d \zeta }{ \int_{\partial \Omega} \mathbb M (x, \zeta) d \zeta } h(\zeta_0)\)

Thus

\[ \left| \frac{\mathcal M[h] (x) }{u^\star (x)} - h (\zeta_0) \right| \le \int_{\partial \Omega} \frac{ \mathbb M(x,\zeta) }{\int_{\partial \Omega} \mathbb M (x, z) d z} | h(\zeta) - h(\zeta_0)| d \zeta \]

For any \(\varepsilon > 0\), due the kernel estimates

\[ \limsup_{x \to \zeta_0} \left| \frac{\mathcal M[h] (x) }{u^\star (x)} - h (\zeta_0) \right| \le \int_{|\zeta - \zeta_0| \le \varepsilon} \frac{ \mathbb M(x,\zeta) }{\int_{\partial \Omega} \mathbb M (x, z) d z} | h(\zeta) - h(\zeta_0)| d \zeta \]

As \(\varepsilon \to 0\) the RHS vanishes due to the continuity of \(h\).

Satisfying the boundary equation.
\(L^1\) data

A more involved argument works for \(h \in L^1 (\partial \Omega)\), and gives integral convergence.

For \(\psi \in \mathcal C (\overline \Omega)\) we have

\[ \frac{1}{\eta} \int_{\delta < \eta} \frac{\mathrm M[h]}{u^\star} \phi \longrightarrow \int_{\partial \Omega} h \phi, \qquad \text{ as } \eta \searrow 0. \]

Very weak formulation of singular boundary value problem

Let \(u_m = \mathrm G[f_m]\). Then, for \(\psi \in L^\infty_c (\Omega)\)

\[ \int_\Omega u_m \psi = \frac{|\partial \Omega|}{ |A_m| } \int_{A_m} \widetilde h \frac{\mathrm G[\psi]}{\delta^\gamma}. \]

Notice that as \(x \to \zeta \in \partial \Omega\)

\[ \lim_{x \to \zeta} \frac{\mathrm G[\psi] (x)}{\delta(x)^\gamma} = \lim_{x \to \zeta} \int_\Omega \frac{\mathbb G(y,x)}{\delta(x)^\gamma} \psi(y) dy \]

by the previous hypothesis

\[ D_\gamma \mathrm G[\psi] (\zeta) = \int_\Omega \mathbb M (y, \zeta) \psi(y) dy \]


Given that

\[ \int_\Omega u_m \psi = \frac{|\partial \Omega|}{ |A_m| } \int_{A_m} \widetilde h \frac{\mathrm G[\psi]}{\delta^\gamma}. \]

by compactness we know \(u_m \to u\) in \(L^1 (\mathrm{supp} \, \psi)\). Hence

\[\begin{equation} \tag{WDF$_s$} \int_\Omega u \psi = \int_{\partial \Omega} h D_\gamma {\mathrm G[\psi]}. \end{equation}\]

Theorem

Any solution \(u \in L^1_{loc} (\Omega)\) of (WDF\(_s\)) is \(u = \mathrm M [h]\)

By Fubini

\[ \int_\Omega u \psi = \int_{\partial \Omega} h(\zeta) \int_\Omega \mathbb M(y, \zeta) \psi (y) dy \, d \zeta . \]

\[ \int_\Omega \left( u(y) - \int_{\partial \Omega} h(\zeta) \mathbb M(y, \zeta) dy \right ) \psi(y) dy = 0 , \qquad \forall \psi \in L^\infty_c (\Omega) . \]

Extensions:
Schrödinger and parabolic setting

Schrödinger-type problems

(Chan, GC & Vázquez, 2021) : we study

\[ \begin{cases} \mathcal L u = \lambda u + f & \text{in }\Omega, \\ \frac{u}{u^\star} = h & \text{on } \partial \Omega. \end{cases} \]

We use the eigenfunction expansion to understand the blow-up as

\[\lambda \to \mathrm{spectrum} (\mathcal L).\]

Parabolic setting

(Chan, GC & Vázquez, 2022)

\[ \begin{dcases} \frac{\partial u}{\partial t} + \mathcal L u = f & \text{in } (0,\infty) \times \Omega, \\[2ex] \frac{u}{u^\star} = h &\text{on } (0,\infty) \times \partial \Omega \\[2ex] u = u_0 & \text{at } t = 0. \end{dcases} \]

We construct the heat kernel, and localise \(f\) to the boundary.

Fractional time derivative

Ongoing

\[ \begin{dcases} \frac{\partial^\alpha u}{\partial t^\alpha} + \mathcal L u = f & \text{in } (0,\infty) \times \Omega, \\[2ex] \frac{u}{u^\star} = h &\text{on } (0,\infty) \times \partial \Omega \\[2ex] \end{dcases} \]

either in the Caputo or Riemann-Liouville setting.


Thank you!

Bibliography

Abatangelo, N. (2015) Large \(s\)-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete and Continuous Dynamical Systems - Series A. 35 (12), 5555–5607. doi:10.3934/dcds.2015.35.5555.
Abatangelo, N. & Dupaigne, L. (2017) Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire. 34 (2), 439–467. doi:10.1016/j.anihpc.2016.02.001.
Abatangelo, N., GC & Vázquez, J.L. (2022) Singular boundary behaviour and large solutions for fractional elliptic equations. Journal of the London Mathematical Society. Accepted for publication, 1–42. https://arxiv.org/abs/1910.00366.
Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R. & Vondracek, Z. (2009) Potential analysis of stable processes and its extensions. Berlin, Springer.
Bonforte, M., Figalli, A. & Vázquez, J.L. (2018) Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calculus of Variations and Partial Differential Equations. 57 (2), 1–34. doi:10.1007/s00526-018-1321-2.
Borthagaray, J.P., Nochetto, R.H. & Salgado, A.J. (2019) Weighted sobolev regularity and rate of approximation of the obstacle problem for the integral fractional laplacian. Mathematical Models and Methods in Applied Sciences. 29 (14), 2679–2717.
Caffarelli, L. & Silvestre, L. (2007) An extension problem related to the fractional laplacian. Commun. Partial Differ. Equations. 32 (8), 1245–1260. doi:10.1080/03605300600987306.
Chan, H., GC & Vázquez, J.L. (2021) Blow-up phenomena in nonlocal eigenvalue problems: When theories of \(L^1\) and \(L^2\) meet. Journal of Functional Analysis. 280 (7), 108845. doi:10.1016/j.jfa.2020.108845.
Chan, H., GC & Vázquez, J.L. (2022) Singular solutions for fractional parabolic boundary value problems. Revista de la Real Academia de Ciencias Exactas, Fı́sicas y Naturales. Serie A. Matemáticas. 116 (4), 159. doi:10.1007/s13398-022-01294-6.
Chen, H. (2018) The Dirichlet elliptic problem involving regional fractional Laplacian. Journal of Mathematical Physics. 59 (7), 1–19. doi:10.1063/1.5046685.
Chen, Z.Q., Kim, P. & Song, R. (2009) Two-sided heat kernel estimates for censored stable-like processes. Probability Theory and Related Fields. 146 (3), 361–399. doi:10.1007/s00440-008-0193-3.
Chen, Z.-Q. & Song, R. (1998) Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312, 465–501. doi:10.1007/s002080050232.
Cusimano, N., del Teso, F. & Gerardo-Giorda, L. (2020) Numerical approximations for fractional elliptic equations via the method of semigroups. ESAIM Mathematical Modelling and Numerical Analysis. http://arxiv.org/abs/1812.01518.
Del Teso, F., Endal, J. & Jakobsen, E.R. (2018) Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. SIAM Journal on Numerical Analysis. 56 (6), 3611–3647. doi:10.1137/18M1180748.
Fall, M.M. & Ros-Oton, X. (2021) Global Schauder theory for minimizers of the \(H^s(\Omega)\) energy. 1–36. http://arxiv.org/abs/2106.07593.
Huang, Y. & Oberman, A. (2014) Numerical methods for the fractional Laplacian: A finite difference-quadrature approach. SIAM Journal on Numerical Analysis. 52 (6), 3056–3084. doi:10.1137/140954040.
Kwasnicki, M. (2017) Ten equivalent definitions of the fractional laplace operator. Fract. Calc. Appl. Anal. 20 (1), 7–51. doi:10.1515/fca-2017-0002.
Ros-Oton, X. & Serra, J. (2014) The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. Journal des Mathematiques Pures et Appliquees. 101 (3), 275–302. doi:10.1016/j.matpur.2013.06.003.
Song, R. (2004) Sharp bounds on the density, Green function and jumping function of subordinate killed BM. Probab. Theory Relat. Fields. 128 (4), 606–628. doi:10.1007/s00440-003-0316-9.